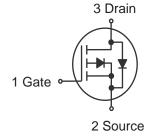


Features

- VDS=20V.
- Super high density cell design for extremely low RDS(ON).
- Exceptional on-resistance and maximum DC current capability.
- We declare that the material of product compliance with RoHS requirements.


SOT-23						
Dim	Min	Max				
Α	0.37	0.51				
В	1.20	1.40				
С	2.30	2.50				
D	0.89	1.03				
E	0.45	5 0.60				
G	1.78	2.05				
Н	2.80 3.00					
J	0.013	.013 0.10				
K	0.903	.903 1.10				
L	0.45	0.61				
M	0.085 0.18					
α	0°	8°				
All Dimensions in mm						

APPLICATIONS

- Power Management in Notebook.
- Portable equipment.
- Battery powered system.
- Load switch.
- Marking Code:2301 OR A1SHB.

Maximum Ratings @ TA = 25°C unless otherwise specified

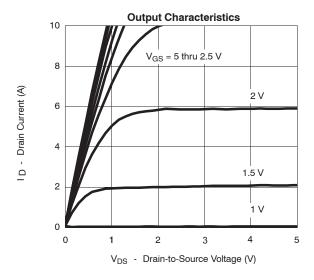
Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	-20	V	
Gate-Source Voltage	V_{GS}	±12	V	
Drain Current	I _D	-2.8	А	
Peak Drain Current 1)	I _{DM}	-10	А	
Power Dissipation $T_A = 25^{\circ}C$ $T_A = 75^{\circ}C$	P _{tot}	0.80 0.50	W	
Thermal Resistance from Juntion to Ambient (PCB mounted) 2)	$R_{\theta JA}$	156	°C/W	
Junction Temperature	TJ	150	$^{\circ}$	
Storage Temperature Range	T _{stg}	- 55 to + 150	$^{\circ}$	

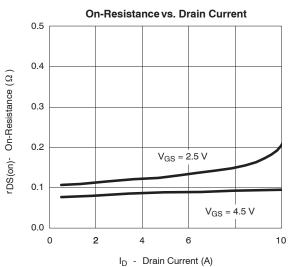
 $^{^{\}mbox{\scriptsize 1)}}\mbox{Repetitive Rating:}$ Pulse width limited by the Maximum junction temperation.

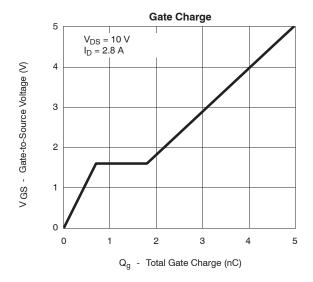
²⁾ 1 in² 2oz Cu PCB board.

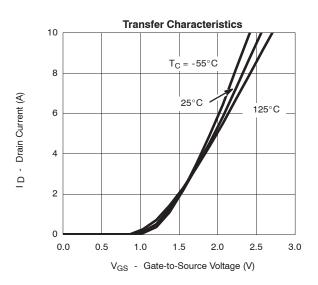
Electrical Characteristics @ TA = 25°C unless otherwise specified

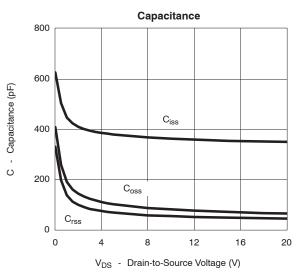
Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Static				•		•
Drain-source breakdown voltage	V(BR)DSS	Vgs = 0V, Ip =-250µA	-20			- V
Gate-source threshold voltage	VGS(th)	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	-0.4	-0.7	-1.0	
Gate-source leakage	I _{GSS}	Vps =0V, Vgs =±12V			±100	nA
Zero gate voltage drain current	I _{DSS}	Vps =-20V, Vgs =0V			-1	μA
Drain-source on-state resistance ^a	RDS(on)	Vgs =-4.5V, Ip =-2.8A		80	100	mΩ
		Vgs =-2.5V, Ip =-2.0A		100	130	
Forward transconductance ^a	g _{fs}	Vps =-5V, Ip =-2.8A		5.5		S
Dynamic ^b				•	•	•
Input capacitance	C _{iss}	Vps =-10V,Vgs =0V,f =1MHz		360		pF
Output capacitance	C _{oss}			67		
Reverse transfer capacitance	C _{rss}			51		
Total note shows	Qg	Vps =-10V,Vgs =-4.5V,Ip =-2.8A		5.5		- nC
Total gate charge		Vps =-10V,Vgs =-2.5V,lp =-2.0A		3.3		
Gate-source charge	Q _{gs}			0.7		
Gate-drain charge	Q_{gd}			1.3		
Gate resistance	R_g	f =1MHz		6.0		Ω
Turn-on delay time	td(on)	V_{DD} =-10V, R_{L} =10 Ω , ID =-1A, V_{GEN} =-4.5V,Rg=1 Ω		11		- ns
Rise time	tr			35		
Turn-off delay time	td(off)			30		
Fall time	t f			10		
Drain-source body diode characterist	ics			•	•	•
Continuous source-drain diode current	Is	T _C =25℃			-3	А
Pulse diode forward current ^a	I _{SM}				-10]
Body diode voltage	V_{SD}	I _S =-0.7A		-0.8	-1.2	V

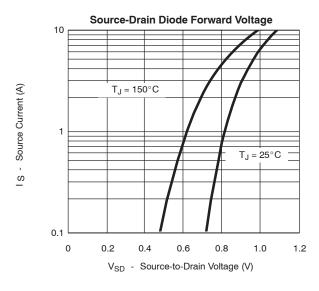

Notes:

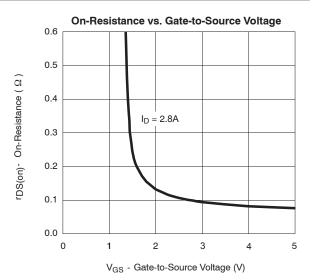

a.Pulse Test : Pulse Width < 300µs, Duty Cycle ≤2%.

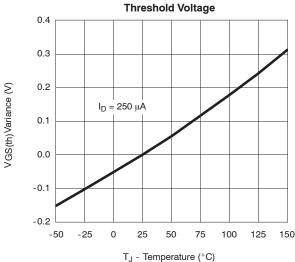

b.Guaranteed by design, not subject to production testing.

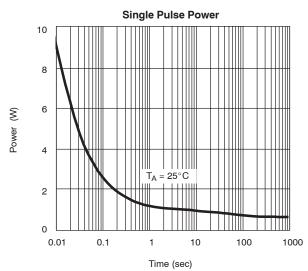



TYPICAL TRANSIENT CHARACTERISTICS









TYPICAL TRANSIENT CHARACTERISTICS

Square Wave Pulse Duration (sec)

http://www.hc-semi.com

IMPORTANT NOTICE

HC-SEMI reserves the right to make changes without further notice to any products herein.

HC-SEMI makes no warranty, representation or guarantee regarding

The suitability of its products for any particular purpose, nor does HC-SEMI assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.

HC-SEMI products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the HC-SEMI product could create a situation where personal injury or death may occur.

Should Buyer purchase or use HC-SEMI products for any such unintended or unauthorized application, Buyer shall indemnify and hold HC-SEMI and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that HC-SEMI was negligent regarding the design or manufacture of the part.